Evolution of selenocysteine decoding and the key role of selenophosphate synthetase in the pathway of selenium utilization

نویسندگان

  • Vadim Gladyshev
  • Gustavo Salinas
  • Héctor Romero
  • Xue-Ming Xu
  • Bradley A. Carlson
  • Dolph L. Hatfield
  • Vadim N. Gladyshev
  • Marla J. Berry
  • Hkctor Romero
چکیده

Evolution of selenocysteine decoding and the key role of selenophosphate synthetase in the pathway of selenium utilization" (2006). Summary: The complete sequencing of genomes and the development of in silico methods for identification of genes encoding selenocysteine (Sec)-containing proteins have greatly contributed to shape our view on the evolution of selenium utilization in nature. Current evidence is consistent with the idea that Sec decoding is a late addition to the genetic code and it evolved once, before the separation of archaeal, bacterial and eukaryal domains. Many organisms have lost the Sec decoding trait, but recent evidence has shown that the loss is not irreversible. The distribution of organisms that use UGA as a Sec codon suggests that Sec decoding evolved as a result of speciation, differential gene loss and horizontal gene transfer. Selenium is also used in the synthesis 2-selenouridine, a modified base of unknown function located in the wobble position of certain tRNAs. It has been recently demonstrated that selenouridine and Sec-decoding traits can evolve independently of each other, but both require selenophosphate synthetase. This ATP-dependent enzyme emerged as a key feature of selenium utilization that allows separation of selenium from the pathways of 40 Selenium: Its molecular biology and role in human health sulfur utilization and non-specific use of selenium. Some animals, including mammals, evolved two selenophosphate synthetases, highlighting an unknown complexity of selenium utilization in nature. Introduction Co-translational incorporation of selenocysteine (Sec) into nascent polypeptides is neither canonical nor universal. A Sec-decoding apparatus is needed to reprogram specific UGA codons [I-31. The Sec-decoding apparatus and selenoprotein genes are present in the three domains of life; yet, many taxa lack them. In Sec decoding species, the selenoproteome consists of a restricted number of proteins [4,5]. All these observations have raised important questions regarding the evolution of Sec utilization in nature. For example, how and when did the translation machinery to decode Sec evolve? If it evolved once, has it been perpetuated solely by vertical descent? Has the UGA codon evolved from nonsense to sense or vice versa? Have extant selenoproteins evolved from Cys-containing proteins or vice versa? What are the selective forces that result in maintenance, loss and acquisition of the Sec-decoding trait and selenoproteins? In a broader scenario, studies on the evolution of Sec invite more in-depth questions regarding the evolution of the genetic code and the translation machinery. Recent work allowed some of these questions to …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selenoproteinless animals: selenophosphate synthetase SPS1 functions in a pathway unrelated to selenocysteine biosynthesis.

Proteins containing the 21st amino acid, selenocysteine (Sec), have been described in all three domains of life, but the composition of selenoproteomes in organisms varies significantly. Here, we report that aquatic arthropods possess many selenoproteins also detected in other animals and unicellular eukaryotes, and that most of these proteins were either lost or replaced with cysteine-containi...

متن کامل

Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis.

Selenophosphate synthetase (SelD) generates the selenium donor for selenocysteine biosynthesis in eubacteria. One homologue of SelD in eukaryotes is SPS1 (selenophosphate synthetase 1) and a second one, SPS2, was identified as a selenoprotein in mammals. Earlier in vitro studies showed SPS2, but not SPS1, synthesized selenophosphate from selenide, whereas SPS1 may utilize a different substrate....

متن کامل

Investigation of Escherichia coli Selenocysteine Synthase (SelA) Complex Formation Using Cryo-Electron Microscopy (Cryo-EM)

Incorporation of selenocysteine (Sec U) into proteins is directed by a in-frame UGA codon in all domains of life. In Bacteria, Sec biosynthesis and incorporation involves the interaction of Selenocysteine Synthase (SelA), tRNA (SelC or tRNA Sec ), Selenophosphate Synthetase (SPS), a specific elongation factor known as SelB and the specific mRNA structure SElenocysteine Insertion Sequence (SECIS...

متن کامل

A non-radioactive assay for selenophosphate synthetase activity using recombinant pyruvate pyrophosphate dikinase from Thermus thermophilus HB8.

Biosynthesis of selenocysteine-containing proteins requires monoselenophosphate, a selenium-donor intermediate generated by selenophosphate synthetase (Sephs). A non-radioactive assay was developed as an alternative to the standard [8-(14)C] AMP-quantifying assay. The product, AMP, was measured using a recombinant pyruvate pyrophosphate dikinase from Thermus thermophilus HB8. The KM and kcat fo...

متن کامل

Characterization of potential selenium-binding proteins in the selenophosphate synthetase system.

Selenophosphate, an activated form of selenium that can serve as a selenium donor, is generated by the selD gene product, selenophosphate synthetase (SPS). Selenophosphate is required by several bacteria and by mammals for the specific synthesis of Secys-tRNA, the precursor of selenocysteine in selenoenzymes. Although free selenide can be used in vitro for synthesis of selenophosphate, the phys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016